2,725 research outputs found

    Unbounded Human Learning: Optimal Scheduling for Spaced Repetition

    Full text link
    In the study of human learning, there is broad evidence that our ability to retain information improves with repeated exposure and decays with delay since last exposure. This plays a crucial role in the design of educational software, leading to a trade-off between teaching new material and reviewing what has already been taught. A common way to balance this trade-off is spaced repetition, which uses periodic review of content to improve long-term retention. Though spaced repetition is widely used in practice, e.g., in electronic flashcard software, there is little formal understanding of the design of these systems. Our paper addresses this gap in three ways. First, we mine log data from spaced repetition software to establish the functional dependence of retention on reinforcement and delay. Second, we use this memory model to develop a stochastic model for spaced repetition systems. We propose a queueing network model of the Leitner system for reviewing flashcards, along with a heuristic approximation that admits a tractable optimization problem for review scheduling. Finally, we empirically evaluate our queueing model through a Mechanical Turk experiment, verifying a key qualitative prediction of our model: the existence of a sharp phase transition in learning outcomes upon increasing the rate of new item introductions.Comment: Accepted to the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Simulating Ability: Representing Skills in Games

    Full text link
    Throughout the history of games, representing the abilities of the various agents acting on behalf of the players has been a central concern. With increasingly sophisticated games emerging, these simulations have become more realistic, but the underlying mechanisms are still, to a large extent, of an ad hoc nature. This paper proposes using a logistic model from psychometrics as a unified mechanism for task resolution in simulation-oriented games

    Geoengineering as a design problem

    Get PDF
    Understanding the climate impacts of solar geoengineering is essential for evaluating its benefits and risks. Most previous simulations have prescribed a particular strategy and evaluated its modeled effects. Here we turn this approach around by first choosing example climate objectives and then designing a strategy to meet those objectives in climate models. There are four essential criteria for designing a strategy: (i) an explicit specification of the objectives, (ii) defining what climate forcing agents to modify so the objectives are met, (iii) a method for managing uncertainties, and (iv) independent verification of the strategy in an evaluation model. We demonstrate this design perspective through two multi-objective examples. First, changes in Arctic temperature and the position of tropical precipitation due to CO_2 increases are offset by adjusting high-latitude insolation in each hemisphere independently. Second, three different latitude-dependent patterns of insolation are modified to offset CO_2-induced changes in global mean temperature, interhemispheric temperature asymmetry, and the Equator-to-pole temperature gradient. In both examples, the "design" and "evaluation" models are state-of-the-art fully coupled atmosphere–ocean general circulation models

    Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    Get PDF
    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to those of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Furthermore, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters

    Sleep’s role in the reconsolidation of declarative memories

    Get PDF
    AbstractSleep is known to support the consolidation of newly encoded and initially labile memories. Once consolidated, remote memories can return to a labile state upon reactivation and need to become reconsolidated in order to persist. Here we asked whether sleep also benefits the reconsolidation of remote memories after their reactivation and how reconsolidation during sleep compares to sleep-dependent consolidation processes. In three groups, participants were trained on a visuo-spatial learning task in the presence of a contextual odor. Participants in the ‘reconsolidation’ group learned the task on day 1. On day 2, they were subjected to a reactivation procedure by presenting the odor cue and a mock recall test in the learning context before a 40-min sleep or wake period. Participants in the ‘remote consolidation’ group followed the same procedure but did not receive reactivation on day 2. Participants in the ‘recent consolidation’ group skipped the procedure on day 1 and learned the task immediately before the sleep or wake period. After the sleep or wake interval, memory stability was tested in all subjects. The results show that this short 40-min sleep period significantly facilitated the reconsolidation of reactivated memories, whereas the consolidation of non-reactivated remote memories was less affected and recently encoded memories did not benefit at all. These findings tentatively suggest that sleep has a beneficial effect on the reconsolidation of remote memories, acting at a faster rate than sleep-associated consolidation

    Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?

    Get PDF
    During El Niño years, fires in tropical forests and peatlands in equatorial Asia create large regional smoke clouds. We characterized the sensitivity of these clouds to regional drought, and we investigated their effects on climate by using an atmospheric general circulation model. Satellite observations during 2000–2006 indicated that El Niño-induced regional drought led to increases in fire emissions and, consequently, increases in aerosol optical depths over Sumatra, Borneo and the surrounding ocean. Next, we used the Community Atmosphere Model (CAM) to investigate how climate responded to this forcing. We conducted two 30 year simulations in which monthly fire emissions were prescribed for either a high (El Niño, 1997) or low (La Niña, 2000) fire year using a satellite-derived time series of fire emissions. Our simulations included the direct and semi-direct effects of aerosols on the radiation budget within the model. We assessed the radiative and climate effects of anthropogenic fire by analyzing the differences between the high and low fire simulations. Fire aerosols reduced net shortwave radiation at the surface during August–October by 19.1±12.9 W m<sup>−2</sup> (10%) in a region that encompassed most of Sumatra and Borneo (90° E–120° E, 5° S–5° N). The reductions in net shortwave radiation cooled sea surface temperatures (SSTs) and land surface temperatures by 0.5±0.3 and 0.4±0.2 °C during these months. Tropospheric heating from black carbon (BC) absorption averaged 20.5±9.3 W m<sup>−2</sup> and was balanced by a reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9±0.6 mm d<sup>−1</sup> (10%). The vulnerability of ecosystems to fire was enhanced because the decreases in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning in the region intensifies drought stress during El Niño

    Magnetoelastic coupling in triangular lattice antiferromagnet CuCrS2

    Full text link
    CuCrS2 is a triangular lattice Heisenberg antiferromagnet with a rhombohedral crystal structure. We report on neutron and synchrotron powder diffraction results which reveal a monoclinic lattice distortion at the magnetic transition and verify a magnetoelastic coupling. CuCrS2 is therefore an interesting material to study the influence of magnetism on the relief of geometrical frustration.Comment: 6 pages, 6 figures, 1 tabl
    • …
    corecore